Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.794
Filtrar
1.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577936

RESUMO

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Ácido Butírico/farmacologia , Janus Quinase 2/metabolismo , Óxido de Magnésio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Aldeído Pirúvico/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
J Hazard Mater ; 469: 134027, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508110

RESUMO

Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.

3.
Opt Express ; 32(5): 7865-7872, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439456

RESUMO

We report on the investigation of continuous-wave (CW) and SEmiconductor Saturable Absorber Mirror (SESAM) mode-locked operation of a Yb:GdScO3 laser. Using a single-transverse-mode, fiber-coupled InGaAs laser diode at 976 nm as a pump source, the Yb:GdScO3 laser delivers 343 mW output power at 1062 nm in the CW regime, which corresponds to a slope efficiency of 52%. Continuous tuning is possible across a wavelength range of 84 nm (1027-1111 nm). Using a commercial SESAM to initiate mode-locking and stabilize soliton-type pulse shaping, the Yb:GdScO3 laser produces pulses as short as 42 fs at 1065.9 nm, with an average output power of 40 mW at 66.89 MHz. To the best of our knowledge, this is the first demonstration of passively mode-locking with Yb:GdScO3 crystal.

4.
J Hazard Mater ; 468: 133797, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377906

RESUMO

Heavy metals raise a global concern and can be easily retained by ubiquitous iron (oxyhydr)oxides in natural and engineered systems. The complex interaction between iron (oxyhydr)oxides and heavy metals results in various mineral-metal binding configurations, such as outer-sphere complexes and edge-sharing inner-sphere complexes, which determine the accumulation and release of heavy metals in the environment. However, traditional experimental approaches are time-consuming and inadequate to elucidate the complex binding relationships and configurations between iron (oxyhydr)oxides and heavy metals. Herein, a workflow that integrates the binding configuration data of 11 heavy metals on 7 iron (oxyhydr)oxides and then trains machine learning models to predict unknown binding configurations was proposed. The well-trained multi-grained cascade forest models exhibited high accuracy (> 90%) and predictive performance (R2 ∼ 0.75). The underlying effects of mineral properties, metal ion species, and environmental conditions on mineral-metal binding configurations were fully interpreted with data mining. Moreover, the metal release rate was further successfully predicted based on mineral-metal binding configurations. This work provides a method to accurately and quickly predict the binding configuration of heavy metals on iron (oxyhydr)oxides, which would provide guidance for estimating the potential release behavior of heavy metals and remediating heavy metal pollution in natural and engineered environments.

5.
Water Res ; 252: 121191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309065

RESUMO

The solid-liquid separation is an indispensable and primary link in the process of sludge treatment and disposal. The past research was focused primarily on the technique explorations of sludge dewatering and always disregarded the internal pore structure and water migration behavior in sludge. In this work, the real three-dimensional pore structure of sludge was obtained by Nano-CT. Based on this, a pore-scale heterogeneous sludge micromodel was firstly presented, and the water flooding experiment was carried out to visualize the water migration behavior. The results showed that the sludge structure transformed from sheet-like floc to microsphere particles, and then agglomerated into large globular granules during anaerobic ammonia oxidation. And the equivalent pore size increases from 342 µm to 617 µm, improving the sludge dewaterability characterized by capillary suction time (CST). The most significant implication of this work was revealing the critical role of invalid connected pore in sludge dewatering. Such pore was not contributed to fluid flow but the circulating vortex in it even induced energy dissipation, thus deteriorated the sludge dewaterability. This work may be helpful to understand the critical role of pore characteristic in water migration and shed light on the new dewatering techniques from the perspective of regulating sludge structure.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química
6.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363076

RESUMO

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

7.
Opt Express ; 32(3): 3221-3233, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297548

RESUMO

We present the growth, spectroscopy, continuous-wave (CW) and passively mode-locked (ML) operation of a novel "mixed" tetragonal calcium rare-earth aluminate crystal, Yb3+:Ca(Gd,Y)AlO4. The absorption, stimulated-emission, and gain cross-sections are derived for π and σ polarizations. The laser performance of a c-cut Yb:Ca(Gd,Y)AlO4 crystal is studied using a spatially single-mode, 976-nm fiber-coupled laser diode as a pump source. A maximum output power of 347 mW is obtained in the CW regime with a slope efficiency of 48.9%. The emission wavelength is continuously tunable across 90 nm (1010 - 1100 nm) using a quartz-based Lyot filter. With a commercial SEmiconductor Saturable Absorber Mirror to initiate and maintain ML operation, soliton pulses as short as 35 fs are generated at 1059.8 nm with an average output power of 51 mW at ∼65.95 MHz. The average output power can be scaled to 105 mW for slightly longer pulses of 42 fs at 1063.5 nm.

8.
Opt Express ; 32(3): 3974-3979, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297606

RESUMO

We report on the continuous-wave (CW) and, for what we believe to be the first time, passively mode-locked (ML) laser operation of an Yb3+-doped YSr3(PO4)3 crystal. Utilizing a 976-nm spatially single-mode, fiber-coupled laser diode as pump source, the Yb:YSr3(PO4)3 laser delivers a maximum CW output power of 333 mW at 1045.8 nm with an optical efficiency of 55.7% and a slope efficiency of 60.9%. Employing a quartz-based Lyot filter, an impressive wavelength tuning range of 97 nm at the zero level was achieved in the CW regime, spanning from 1007 nm to 1104 nm. In the ML regime, incorporating a commercially available semiconductor saturable absorber mirror (SESAM) to initiate and maintain soliton-like pulse shaping, the Yb:YSr3(PO4)3 laser generated pulses as short as 61 fs at 1062.7 nm, with an average output power of 38 mW at a repetition rate of ∼66.7 MHz.

9.
Epilepsy Behav ; 150: 109570, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070412

RESUMO

OBJECTIVE: Epidemiological studies have reported an association between epilepsy and dementia. However, the causal relationship between epilepsy and the risk of dementia is not clear. We aimed to inspect the causal effect of epilepsy on memory loss and dementia. METHODS: We analyzed summary data of epilepsy, memory loss, and dementia from the genome-wide association study (GWAS) using the two-sample Mendelian randomization (MR) method. We used the estimated odds ratio of memory loss and dementia associated with each of the genetically defined traits to infer evidence for a causal relationship with the following exposures: all epilepsy, focal epilepsy (including focal epilepsy with hippocampal sclerosis, lesion-negative focal epilepsy, and focal epilepsy with other lesions), and genetic generalized epilepsy (including childhood absence epilepsy, generalized tonic-clonic seizures alone, Juvenile absence epilepsy, and Juvenile myoclonic epilepsy). RESULTS: According to the result of MR using the inverse variance weighted method (IVW), we found that genetically predicted epilepsy did not causally increase the risk of memory loss and dementia (p > 0.05). Results of the MR-Egger and weighted median method were consistent with the IVW method. CONCLUSIONS: No evidence has been found to support the notion that epilepsy can result in memory loss and dementia. The associations observed in epidemiological studies could be attributed, in part, to confounding or nongenetic determinants.


Assuntos
Demência , Epilepsias Parciais , Epilepsia Tipo Ausência , Humanos , Criança , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Epilepsia Tipo Ausência/complicações , Epilepsia Tipo Ausência/epidemiologia , Epilepsia Tipo Ausência/genética , Amnésia , Demência/complicações , Demência/epidemiologia , Demência/genética
10.
Environ Res ; 245: 118012, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154564

RESUMO

The interactive effect of soil cooling and nitrogen (N) addition can accurately simulate climatic and anthropogenic effects on terrestrial and other land-based ecosystems, but direct empirical measurements on the effects of cooling and N addition on soil carbon (C) and N are lacking. Hence, transplanting soils into colder regions was used to evaluate the effects of cooling and N addition on soil C and N. We used PVCs of 30 cm in height and 8 cm in diameter to extract soil samples. Soil C and N were significantly (P < 0.05) increased by transplanting soils into colder regions. In contrast, cooling has insignificantly (P > 0.05) increased the soil dissolved organic C (DOC) and dissolved organic (DON), but the effect was negatively significant on soil pH compared to the C/N ratio. Similarly, N addition significantly increased the measured soil N stock. However, the effect was negatively significant on soil pH (P < 0.05) compared to the C/N ratio (P > 0.05). Nevertheless, the interaction of cooling and N addition did not affect the soil C and N storage. A similar effect was observed on the soil DOC and DON. The results presented here illustrate that transplanting soils into colder regions and N deposition has perfectly simulated the effects of climate-forcing factors on soil C and N storage in terrestrial and other land-based ecosystems. Accordingly, this study suggests that low temperatures have stimulated the accumulation of the measured soil organic and dissolved properties, but the effect is less consequential when low temperature interacts with N addition in high-elevation areas where ecosystem structures and functions are limited by temperature and may serve as a baseline for future research on land feedbacks to the climate system.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Florestas , Nitrogênio/análise
11.
Angew Chem Int Ed Engl ; 63(6): e202318792, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117669

RESUMO

Electroreduction of nitric oxide (NO) to NH3 (NORR) has gained extensive attention for the sake of low carbon emission and air pollutant treatment. Unfortunately, NORR is greatly hindered by its sluggish kinetics, especially under low concentrations of NO. Herein, we developed a chlorine (Cl) vacancy strategy to overcome this limitation over FeOCl nanosheets (FeOCl-VCl ). Density functional theory (DFT) calculations revealed that the Cl vacancy resulted in defective Fe with sharp d-states characteristics in FeOCl-VCl to enhance the absorption and activation of NO. In situ X-ray absorption near-edge structure (XANES) and attenuated total reflection-infrared spectroscopy (ATR-IR) verified the lower average oxidation state of defective Fe to enhance the electron transfer for NO adsorption/activation and facilitate the generation of key NHO and NHx intermediates. As a result, the FeOCl-VCl exhibited superior NORR activities with the NH3 Faradaic efficiency up to 91.1 % while maintaining a high NH3 yield rate of 455.4 µg cm-2 h-1 under 1.0 vol % NO concentration, competitive with those of previously reported literatures under higher NO concentration. Further, the assembled Zn-NO battery utilizing FeOCl-VCl as cathode delivered a record peak power density of 6.2 mW cm-2 , offering a new route for simultaneous NO removal, NH3 production, and energy supply.

12.
Eco Environ Health ; 2(3): 176-183, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38074990

RESUMO

Antimony (Sb) in natural water has long-term effects on both the ecological environment and human health. Iron mineral phase transformation (IMPT) is a prominent process for removing Sb(V) from natural water. However, the importance of IMPT in eliminating Sb remains uncertain. This study examined the various Sb-Fe binding mechanisms found in different IMPT pathways in natural water, shedding light on the underlying mechanisms. The study revealed that the presence of goethite (Goe), hematite (Hem), and magnetite (Mag) significantly affected the concentration of Sb(V) in natural water. Elevated pH levels facilitated higher Fe content in iron solids but impeded the process of removing Sb(V). To further our understanding, polluted natural water samples were collected from various locations surrounding Sb smelter sites. Results confirmed that converting ferrihydrite (Fhy) to Goe significantly reduced Sb levels (<5 µg/L) in natural water. The emergence of secondary iron phases resulted in greater electrostatic attraction and stabilized surface complexes, which was the most likely cause of the decline of Sb concentration in natural water. The comprehensive findings offer new insights into the factors governing IMPT as well as the Sb(V) behavior control.

13.
Medicine (Baltimore) ; 102(50): e36511, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115268

RESUMO

Exercise rehabilitation can improve the prognosis of patients with coronary heart disease. However, a bibliometric analysis of the global exercise rehabilitation for coronary heart disease (CHD) research topic is lacking. This study investigated the development trends and research hotspots in the field of coronary heart disease and exercise rehabilitation. CiteSpace software was used to analyze the literature on exercise therapy for CHD in the Web of Science Core Collection database. We analyzed the data of countries/institutions, journals, authors, keywords, and cited references. A total of 3485 peer-reviewed papers were found, and the number of publications on the topic has steadily increased. The most productive country is the USA (1125), followed by China (477) and England (399). The top 3 active academic institutions are Research Libraries UK (RLUK) (236), Harvard University (152), and the University of California System (118). The most commonly cited journals are Circulation (2596), The most commonly cited references are "Exercise-based cardiac rehabilitation for coronary heart disease" (75), Lavie CJ had published the most papers (48). World Health Organization was the most influential author (334 citations). The research frontier trends in this field are body composition, participation, and function. Research on the effects of physical activity or exercise on patients with CHD is a focus of continuous exploration in this field. This study provides a new scientific perspective for exercise rehabilitation and CHD research and gives researchers valuable information for detecting the current research status, hotspots, and emerging trends for further research.


Assuntos
Reabilitação Cardíaca , Doença das Coronárias , Humanos , Terapia por Exercício , Exercício Físico , Bibliometria
14.
PLoS Genet ; 19(10): e1011011, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37856540

RESUMO

Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Isópodes , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Drosophila/metabolismo , Proteínas de Drosophila , Isópodes/genética , Isópodes/metabolismo , Mamíferos/metabolismo , Natação
15.
Environ Sci Pollut Res Int ; 30(53): 113600-113608, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851258

RESUMO

Electroplating sludge is a typical heavy metal-containing hazardous waste with tens of millions of tons produced annually in China. Acid leaching is the most common method to extract valuable heavy metals for resource recycling and environmental protection. However, the coexisting elements, which are released from electroplating sludge to the leaching solution, will hinder the recycling of valuable heavy metals. In this work, dynamic acid-leaching experiments, X-ray diffraction analysis, and simulation calculations were conducted. It was found that coexisting elements (mainly Ca, Fe, and Al) account for a large proportion, and calcium salts as coexisting mineral phase (especially CaCO3) are ubiquitous in electroplating sludge. Moreover, the evolution of coexisting mineral phase plays an essential role in the acid-leaching process: (1) the dissolution of CaCO3 contributed a strong acid-neutralization capability and released Ca2+; (2) H2SO4 is the optimal extracting reagent, since it triggered the transformation of calcium salts to CaSO4·2H2O, reducing the Ca2+ concentration; (3) the coexisting elements Fe and Al would form ferrous and aluminum salt minerals with the acid-leaching process, which reduces the leaching of low-value elements. This work provides a new perspective on the acid-leaching mechanism of electroplating sludge, where the evolution of the mineral phase effect the release of valuable heavy metals and coexisting elements. This work also provides as comprehensive information as possible on electroplating sludge and inspires the improvement of the acid-leaching method.


Assuntos
Metais Pesados , Esgotos , Esgotos/análise , Galvanoplastia , Cálcio , Sais , Metais Pesados/análise , Minerais , Ácidos
16.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762493

RESUMO

Despite the numerous treatments for triple-negative breast cancer (TNBC), chemotherapy is still one of the most effective methods. However, the impact of chemotherapy on immune cells is not yet clear. Therefore, this study aims to explore the different roles of immune cells and their relationship with treatment outcomes in the tumor and blood before and after paclitaxel therapy. We analyzed the single-cell sequencing data of immune cells in tumors and blood before and after paclitaxel treatment. We confirmed a high correlation between T cells, innate lymphoid cells (ILCs), and therapeutic efficacy. The differences in T cells were analyzed related to therapeutic outcomes before and after paclitaxel treatment. In the effective treatment group, post-treatment tumor-infiltrating CD8+ T cells were associated with elevated inflammation, cytokines, and Toll-like-receptor-related gene expression, which were expected to enhance anti-tumor capabilities in tumor immune cells. Moreover, we found that the expression of immune-checkpoint-related genes is also correlated with treatment outcomes. In addition, an ILC subgroup, b_ILC1-XCL1, in which the corresponding marker gene XCL1 was highly expressed, was mainly present in the effective treatment group and was also associated with higher patient survival rates. Overall, we found differences in gene expression in T cells across different groups and a correlation between the expression of immune checkpoint genes in T cells, the b_ILC1-XCL1 subgroup, and patient prognosis.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunidade Inata , Linfócitos/metabolismo
17.
Environ Sci Pollut Res Int ; 30(47): 104544-104553, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704811

RESUMO

Chromium gypsum (CG) is a common hazardous waste formed in chromium salt or electroplating industries. The trapped or lattice-doped CrO42- in gypsum crystals are difficult to be reduced or removed by traditional methods, which will be re-oxidized or slowly released during long-term hypaethral storage. In this study, microwave hydrothermal treatment was applied to remove chromium in CG. Under optimal conditions (solid-liquid ratio of 1:5, 0.1 M sulfuric acid as liquid media, and 110 °C), over 99% of the chromium in CG can be removed within 10 min. XRD spectra indicated that 59.8% gypsum was transformed to from dihydrate gypsum to hemihydrate gypsum. The toxicity leaching test shows that chromium in CG is 377.0 mg/L before detoxification and 0.55 mg/L after detoxification, which proves that chromium in CG lattice can be efficiently removed. This work enables to significantly advance the dehydration phase transformation process of gypsum and release the heavy metal impurities within it more quickly and provides new possibilities to treat similar solid waste containing gypsum or minerals with hydration water.


Assuntos
Cromo , Metais Pesados , Cromo/química , Sulfato de Cálcio/química , Micro-Ondas , Metais Pesados/química , Água/química
18.
JHEP Rep ; 5(10): 100843, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675273

RESUMO

Background & Aims: Exploiting key regulators responsible for hepatocarcinogenesis is of great importance for the prevention and treatment of hepatocellular carcinoma (HCC). However, the key players contributing to hepatocarcinogenesis remain poorly understood. We explored the molecular mechanisms underlying the carcinogenesis and progression of HCC for the development of potential new therapeutic targets. Methods: The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and Genotype-Tissue Expression (GTEx) databases were used to identify genes with enhanced expression in the liver associated with HCC progression. A murine liver-specific Ftcd knockout (Ftcd-LKO) model was generated to investigate the role of formimidoyltransferase cyclodeaminase (FTCD) in HCC. Multi-omics analysis of transcriptomics, metabolomics, and proteomics data were applied to further analyse the molecular effects of FTCD expression on hepatocarcinogenesis. Functional and biochemical studies were performed to determine the significance of loss of FTCD expression and the therapeutic potential of Akt inhibitors in FTCD-deficient cancer cells. Results: FTCD is highly expressed in the liver but significantly downregulated in HCC. Patients with HCC and low levels of FTCD exhibited worse prognosis, and patients with liver cirrhosis and low FTCD levels exhibited a notable higher probability of developing HCC. Hepatocyte-specific knockout of FTCD promoted both chronic diethylnitrosamine-induced and spontaneous hepatocarcinogenesis in mice. Multi-omics analysis showed that loss of FTCD affected fatty acid and cholesterol metabolism in hepatocarcinogenesis. Mechanistically, loss of FTCD upregulated peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element-binding protein 2 (SREBP2) by regulating the PTEN/Akt/mTOR signalling axis, leading to lipid accumulation and hepatocarcinogenesis. Conclusions: Taken together, we identified a FTCD-regulated lipid metabolic mechanism involving PPARγ and SREBP2 signaling in hepatocarcinogenesis and provide a rationale for therapeutically targeting of HCC driven by downregulation of FTCD. Impact and implications: Exploiting key molecules responsible for hepatocarcinogenesis is significant for the prevention and treatment of HCC. Herein, we identified formimidoyltransferase cyclodeaminase (FTCD) as the top enhanced gene, which could serve as a predictive and prognostic marker for patients with HCC. We generated and characterised the first Ftcd liver-specific knockout murine model. We found loss of FTCD expression upregulated peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element-binding protein 2 (SREBP2) by regulating the PTEN/Akt/mTOR signalling axis, leading to lipid accumulation and hepatocarcinogenesis, and provided a rationale for therapeutic targeting of HCC driven by downregulation of FTCD.

19.
Water Res ; 245: 120571, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683523

RESUMO

Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.

20.
Angew Chem Int Ed Engl ; 62(46): e202305651, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37612240

RESUMO

Tetrafluoromethane (CF4 ), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4 , but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27 Al and 71 Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV ), which readily dissociate water to form Ga-OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga-OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2 O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...